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The application of rotational symmetry modes to quantitative rigid-body

analysis is demonstrated for octahedral rotations in Mg(H2O)6RbBr3. Rigid-

body rotations are treated as axial-vector order parameters and projected using

group-theoretical methods. The high-temperature crystal structure of the

Mg(H2O)6RbBr3 double salt consists of a cubic perovskite-like corner-sharing

network of RbBr6 octahedra with isolated MgO6 octahedra at the perovskite A

sites. A phase transition occurs at 411 K upon cooling, whereupon the MgO6

octahedra experience a substantial rigid-body rotation, the RbBr6 octahedra are

translated but not rotated, and both types of octahedra become slightly

distorted. The MgO6 rotation has three orthogonal components associated with

the X5
�, �4

+ and X1
� irreducible representations of the parent Pm3m space-group

symmetry which, given the weakly first-order character of the transition, appear

to be strongly coupled. Parametric and sequential refinements of the

temperature-dependent structure were conducted using four model types: (1)

traditional atomic xyz coordinates for each atom, (2) traditional rigid-body

parameters, (3) purely displacive symmetry modes and (4) rigid-body rotational

symmetry modes. We demonstrate that rigid-body rotational symmetry modes

are an especially effective parameter set for the Rietveld characterization of

phase transitions involving polyhedral rotations.

1. Introduction
The definition of rigid collections of atoms is an essential

means of reducing effective complexity in numerous inor-

ganic, molecular and macromolecular compounds. Originally

developed as a tool for single-crystal analysis (Scheringer,

1963), the rigid-body parameter set is particularly useful in

Rietveld analyses (Dinnebier, 1999; Hazen & Finger, 1979),

and is now available in several Rietveld refinement packages.

The external orientation of the rigid body around the pivot

point is typically defined using Euler angles in an orthonormal

coordinate system that has been set by convention relative to

basis vectors of the crystal lattice. Depending on the type of

structure, there may or may not be an atom located at the

pivot point. The internal rigid-body parameters, which can be

either fixed or refined, locate each of the passenger atoms of

the rigid body in terms of interatomic bond distances, bond

angles and torsion angles.

If only one symmetry-unique parent atom is displaced by a

rigid-body rotation, it is most convenient to refine the atomic

coordinates of the rigid-body atom directly. However, the

number of displacive parameters required to describe the

rotation scales linearly with the number of passenger atoms, in

contrast to the number of rotational parameters needed which

is independent of the internal complexity. For a complicated

molecular or polyhedral collection of atoms, the rigid-body

description will be much more economical, in the sense that

there will be fewer large-valued parameters. Of course, when

the internal rigid-body parameters are accounted for, the total

number of structural parameters is the same for both displa-

cive and rigid-body models. However, even when the rigid

body is quite flexible, the rigid-body parameter set will still be

easier to interpret when the external rotation angles are large.

Many crystal structures can be viewed as low-symmetry

distortions of some higher-symmetry parent structure. The

word distortion is used generally here to refer to any type of

physical order parameter, such as an atomic displacement,

magnetic moment, site-occupancy variation etc. We tradi-

tionally define separate parameters for each symmetry-unique

atom (e.g. xyz coordinates) and observe that the total number

of free parameters is much greater in the distorted phase than

in the parent. Alternatively, one can always use the irreducible

representations (irreps) of the parent symmetry group to

define a symmetry-motivated parameter set that spans the

same space of achievable distortions and contains the same
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number of parameters. These ‘symmetry modes’ are defined at

specific points in reciprocal space (i.e. where corresponding

superlattice intensities are observed) and consist of mutually

orthogonal linear combinations of the traditional parameters.

Furthermore, symmetry modes have zero amplitude in the

parent structure, so that they effectively quantify deviations

from the parent.

Because the symmetry-mode parameter set naturally lends

itself to an invariant series expansion of the free energy, real

phase transitions typically activate a relatively small fraction

of the available modes. This reduction in the number of active

(i.e. substantially nonzero) parameters can simplify a structure

solution and stabilize a difficult structure refinement (Camp-

bell et al., 2007). Kerman et al. (2012) showed that for room-

temperature WO3, which exhibits a 2� 2� 2 supercell with 96

displacive modes in P1 symmetry, only five substantially active

independent modes arise. By independently identifying each

of these modes, they were able to directly detect the correct

space-group symmetry, P21/n, and to solve the distorted

structure. Much recent work has successfully used displacive

symmetry modes to describe distortions involving polyhedral

tilt patterns (Swainson & Yonkeu, 2007; Howard et al., 2008;

Hatt & Spaldin, 2010; Lister et al., 2010; Swainson et al., 2010;

Wang & Angel, 2011; Zhao et al., 2011; Ati et al., 2011; Peel et

al., 2012; Senn et al., 2012; Yamauchi, 2013).

The development of a symmetry-adapted parameter set for

rotations would provide a novel and potentially more effective

means of characterizing phase transitions in rigid-body

systems. Müller et al. (2010) conducted a parametric rigid-

body refinement of the temperature-dependent structure of

CeFeO2, which undergoes a phase transition upon cooling

(Fm3m ! Pbca) at 353 K, wherein the corner-sharing FeO4

tetrahedra experience significant reorientation. They also

performed a parametric refinement of displacive symmetry-

mode parameters for comparison. Because the FeO4 tetra-

hedra are structurally very simple, both parameter sets were

effective. However, for more complicated rigid-body struc-

tures, it would be very helpful to combine the use of rigid

bodies and symmetry modes. In the present work, we

demonstrate just such a parameter set and describe the prin-

ciples upon which it can be obtained. The internal parameters

of a distorted rigid body could also be symmetry adapted using

the irreps of the point group of the undistorted rigid body, but

we focus on rotational symmetry modes here.

Displacive and rotational order parameters can be used to

describe the same structure, but have very different tensor

properties. An atomic displacement d is a polar vector,

meaning that, for any symmetry operation g contained in

space group G, the symmetry-equivalent displacement will be

gðdÞ ¼ Sg � d, where Sg is the three-dimensional matrix

operator associated with g. In contrast, a rotation vector r is an

axial vector (also known as a pseudo-vector), which means

that gðrÞ ¼ DetðSgÞSg � r, where the determinant equals +1 for

proper symmetry operations (e.g. rotations and translations)

and�1 for improper symmetry operations (e.g. reflections and

inversions). Using the implementation of axial vectors in the

ISOTROPY program, Howard & Stokes (1998, 2005)

employed axial-vector order parameters to qualitatively

describe octahedral tilt patterns in distorted perovskites.

Rotational symmetry modes have also been examined for

spinel structures (Talanov & Shirokov, 2012). These order

parameters were all defined using the crystallographic space

groups published in Volume A of International Tables for

Crystallography (Hahn, 1983).

Mg(H2O)6RbBr3 was selected for the present case study

because of the presence of two chemically distinct rigid

polyhedral units and a conveniently accessible phase transi-

tion that gives rise to an interesting pattern of large-angle

rigid-body rotations. The crystal structure of Mg(H2O)6RbBr3

at room temperature (referred to here as the low-temperature

or LT structure) was first described by Dinnebier et al. (2008)

and found to be isostructural to other magnesium double salts,

e.g. Mg(H2O)6RbCl3 (Marsh, 1992) or Mg(H2O)6(NH4)Cl3

(Solans et al., 1983). It has monoclinic C2/c symmetry, though

its metric is nearly orthorhombic: a = 9.645 (3), b = 9.868 (3),

c = 13.791 (5) Å and � = 90.07 (1)�, as illustrated on the left-

hand panel of Fig. 1. Its structure is characterized by a three-

dimensional network of corner-sharing RbBr6 octahedra that

contains one Mg(OH2)6 octahedron in the center of each void.

If each Mg(OH2)6 unit were replaced by an atom X, located at

the center of gravity, the resulting XRbBr3 structure would be

analogous to a 21=2 � 21=2 � 2 supercell of a distorted cubic

perovskite with a = 6.94189 Å, and with Rb on the B site and X

on the A site. The octahedral rigid bodies employed are illu-

strated in Fig. 2.

At elevated temperatures, Mg(H2O)6RbBr3 undergoes a

reversible phase transition to a cubic (Pm3m) high-tempera-

ture (HT) structure analogous to an ideal perovskite. In an
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Figure 1
Comparison of the LT (left view) and HT (right view) crystal structures of
Mg(H2O)6RbBr3 as viewed along the b axis (top panel) and the c axis
(bottom panel). In the panels of the HT phase, the new cubic unit cell is
indicated in black.



open system, the phase transition occurs at approximately T =

358 K (Dinnebier et al., 2008), while in a closed system, it is

shifted to a considerably higher temperature of T = 408 K

(Emons et al., 1991). The HT structure exhibits fourfold orien-

tational disorder of its Mg(OH2)6 octahedral tilts as illustrated

in the right-hand panel of Fig. 1 (Dinnebier et al., 2008), which

then grow in size and become orientationally ordered in the

LT phase, so that the tilts alternate along the long axis of the

supercell. The RbBr6 octahedra remain untilted above and

below the transition. Note that our symmetry-mode descrip-

tion of the LT phase is referenced to an idealized cubic parent

structure in which the Mg(OH2)6 octahedra are ordered and

aligned parallel to the cell axes (see Fig. 3), though the actual

HT structure is orientationally disordered.

2. Methods
The synthesis of Mg(H2O)6RbBr3 was performed as stated by

Dinnebier et al. (2008). The compound was obtained from

slow isothermal crystallization from an aqueous solution

containing 82.68 mg of RbBr and 92.05 mg of MgBr2 at 323 K.

High-resolution laboratory X-ray powder diffraction data

(Fig. 4) were recorded using a Bruker D8 diffractometer in

Debye–Scherrer geometry, equipped with a Våntec-1 position-

sensitive detector (6� opening angle) and Cu K�1 radiation

(1.540596 Å) obtained from a primary Ge(111) Johansson

monochromator. The sample was sealed in a glass capillary

and rotated during the measurement in order to improve the

orientational uniformity of the powder. The instrumental

profile was determined from a measurement of the NIST SRM

660a LaB6 standard.

Furthermore, in situ temperature-dependent powder

diffraction data were collected at the high-energy powder

diffraction beamline P02.1 of the Petra III synchrotron using a

wavelength of 0.20752 Å. The sample was sealed in a glass

capillary and measurements were performed in the tempera-

ture range from 303 to 422 K with a constant heating rate of

2 K min�1. The exposure time was two minutes for each data

set. A two-dimensional simulated Guinier plot, prepared with

the Powder 3D software (Hinrichsen et al., 2006), is shown in

Fig. 5. In this plot, the observed intensity is plotted versus

diffraction angle 2� and temperature T. The phase transition is

easily recognized from the merging of several groups of

diffraction peaks as the high-symmetry phase is realized; this

occurs at about set number 37, which corresponds to 411 K. At

about 420 K, a dehydrated phase appears as a decomposition

product, which will not be discussed further in the present

work.

Rietveld refinements were performed using the TOPAS

software (version 4.2; Bruker AXS GmbH, Karlsruhe,

Germany). In each refinement, the background was modeled

using a Chebyshev polynomial. The instrumental broadening

was implemented by the fundamental parameter approach of

Cheary & Coelho (1992) as available in TOPAS. In addition

to Mg(H2O)6RbBr3, a small amount (about 3.5 wt%) of RbBr

is present in the sample and was therefore included in the

research papers

534 Melanie Müller et al. � Symmetry-mode description of rigid-body rotations J. Appl. Cryst. (2014). 47, 532–538

Figure 3
Idealized cubic parent structure of Mg(H2O)6RbBr3, in which the high-
temperature orientation disorder has been eliminated.

Figure 4
Rietveld fit of the RM model of Mg(H2O)6RbBr3 against room-
temperature laboratory powder diffraction data. The red and blue lines
correspond to the calculated and measured patterns, respectively. The
difference (measured minus calculated) pattern is indicated by the grey
line. All four models resulted in comparable fits.

Figure 2
MgO6 (left view) and RbBr3 (right view) octahedral rigid bodies of
Mg(H2O)6RbBr3 used for the refinement of the RB and DM models. The
solid atoms are defined explicitly, whereas the semitransparent atoms are
generated via space-group symmetry. The blue vector indicates the
general rotation axis of the MgO6 octahedron, which is the sum of three
vector components in the RM model.



refinements as a second phase. To make the definition of rigid

bodies more convenient in TOPAS, we added zero-occupancy

hydrogen atoms to the model as needed. When using rota-

tional symmetry modes, a dummy hydrogen atom was placed

within each rigid body to define the rotation axis relative to

the center of rotation.

3. Results and discussion

The C2/m space-group symmetry of Mg(H2O)6RbBr3 permits

13 displacive degrees of freedom (DOFs) in the LT structure:

O1(x, y, z), O2(x, y, z), O3(x, y, z), Br2(x, y, z), Rb(y). Though

the oxygen atoms are located on general positions, the MgO6

octahedron lies on an inversion center, so that opposite pairs

of oxygen atoms are related by symmetry. The three oxygen-

atom displacements contribute to three substantial rotational

DOFs and six small internal DOFs. The RbBr6 octahedron is

centered on a twofold axis, which is capable of supporting

extended-body rotations about the y axis. Though the Br2

atom lies on a general position, it joins two adjacent octahedra

separated by a C-centering translation, which must rotate in

the same direction. Because such a rotation would split each

Br2 atom in half, and is therefore topologically impossible, the

Br2 displacement contributes three internal rigid-body DOFs

but no rotational DOFs. The Rb atoms lie on twofold axes and

can therefore be displaced along y and followed by the Br2

atoms. However, this octahedral translation must be tightly

coupled to the internal rigid-body DOFs since the Br1 atoms

lie on inversion centers, which cannot be displaced. All struc-

tural DOFs associated with RbBr6 proved to be quite small.

Using the ISODISTORT software package (Campbell et al.,

2006), we find that the pattern of atomic displacements in

Mg(H2O)6RbBr3 can also be described using 13 displacive

symmetry modes. These symmetry modes belong to seven

different irreps of the parent cubic symmetry group: �þ1 , �þ3 ,

�þ4 , �þ5 , X�1 , X�4 , X�5 . The � point is located at k = (0, 0, 0) in

the first Brillioun zone of the reciprocal lattice, while the X

point is located at k = ð0; 1
2 ; 0Þ, where superlattice intensity is

observed. For the MgO6 octahedra, X�5 , �þ4 and X�1 provide

three rotations about the respective x, y and z axes, while �þ1 ,

�þ3 , 2�þ5 , X�4 and X�5 give rise to six internal modes. �þ1 , for

example, is responsible for the isotropic breathing mode of

MgO6, which is also available in the parent cubic structure. For

the RbBr6 octahedra, X�5 yields one translation along y, while

X�4 and 2X�5 give rise to three internal modes.

ISODISTORT was also used to calculate rotational (i.e.

axial vector) symmetry modes, where irreps X�5 , �þ4 and X�1
yield the respective x, y and z components of the rotation

vector of MgO6. In addition, �þ4 generates a topologically

impossible (but not symmetry forbidden) RbBr6 rotation

about the y axis, which cannot be refined. Because ISODIS-

TORT has not yet implemented the projection of axial-vector

order parameters from parent structures with crystallographic

space-group symmetry, we used the more complicated but

entirely equivalent procedure of projecting magnetic moment

vectors (also axial vectors) from a paramagnetic parent to

obtain a magnetic structure with a type-1 magnetic space

group (i.e. Fedorov group), and then simply reinterpreted

each magnetic moment vector (measured in �B) as a rotation

angle (measured in radians).

For the structural description of Mg(H2O)6RbBr3, four

different models were used in Rietveld refinements against

X-ray powder diffraction data:

(1) The atomic coordinate (AC) model provides 13 free

atomic coordinates as independent parameters.

(2) The displacive symmetry-mode (DM) model provides 13

displacive symmetry modes.

(3) The rigid-body (RB) model provides three orientation

angles for the MgO6 octahedra, one translation mode for the

RbBr6 octahedra, and nine Z-matrix parameters for the

internal rigid-body DOFs.

4) The rotational symmetry-mode (RM) model provides

three rotational symmetry modes for the orientation of the

MgO6 octahedra, one X�5 translation mode for the RbBr6

octahedra and nine Z-matrix parameters for the internal rigid-

body DOFs.

A comparison of the room-temperature lattice parameters

and fractional atomic coordinates further showed that, for a

given parameter, the fitted values obtained from the various

models fall within two standard uncertainities (s.u.’s) of one

another. The calculated R value (Rp) also indicates that all

four models yielded comparable results: Rp = 4.14% for AC,

Rp = 4.16% for RB, Rp = 4.24% for DM, Rp = 4.17% for DM

and for all cases Rexp = 3.66%.

Sequential and parametric (Stinton & Evans, 2007) Rietveld

refinements of the temperature-dependent in situ synchrotron

powder diffraction data of Mg(H2O)6RbBr3 were performed

using all four structural models (AC, RB, DM, RM).1
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Figure 5
Simulated two-dimensional temperature-dependent Guinier plot of
Mg(H2O)6RbBr3. The cubic monoclinic phase transition can be seen as
several groups of peaks join at approximately 411 K. At about 418 K, a
first-order phase transition occurs, whereupon the sample begins to
dehydrate.

1 The TOPAS input for the room-temperature fits of each model is included in
the supporting information available from the IUCr electronic archives
(Reference: TO5065).



Unlike the traditional AC model, the RB, DM and RM

models all provide natural and/or intuitive structural

constraints (i.e. internal rigid-body parameter deviations or

displacive symmetry-mode amplitudes that are clearly insub-

stantial and can therefore be fixed), effectively reducing the

structural complexity and stabilizing the refinement. In both

the RB and RM models, the three internal angles of MgO6

were judged to be insubstantial and fixed to 90�. The inter-

atomic distances of the RbBr6 rigid body need to be

constrained to the lattice parameter, and its y-axis translation

was proven to be indistinguishable from zero. This reduced the

total number of DOFs to seven. In the DM model, only seven

of the 13 displacive symmetry modes were judged to be active

as they provide the same possibilities for atomic movement as

the RB and RM approaches. Some modes (e.g. the two X�5
modes for oxygen) need to be coupled in order to preserve the

shape of the MgO6 octahedron. The non-active modes distort

the octahedra either in angle or by variation of bond lengths

and are therefore neglected.

For each of the four methods, sequential Rietveld refine-

ments showed that the variable structural parameters exhibit a

typical power law behavior. For this reason, the free para-

meters of the LT phase were assumed to follow a temperature

trend of the form Q = f jTcrit � Tj��, where Tcrit is the transi-

tion temperature, f quantifies the amplitude of the variation

and �* is a critical exponent. Because this phase transition

involves the superposition of multiple order parameters, it

must be first order, though it is only weakly first order,

showing no obvious discontinuities at Tcrit. However, even for

a weakly first-order transition, the fluctuations do not

normally become critical, so that it is not easy to assign

physical meaning to the exponents �*. Thus we prefer to refer

to ‘pseudo-critical’ exponents in this case.

The greater simplicity of the more constrained models (RB,

DM, RM) clearly improved the stability of the parametric fits

without sacrificing quality of fit, as seen in Fig. 6. For the

sequential fits, however, all four models resulted in similar fits,

proving the applicability of the different models. Using AC,

the overall sequential refinement series is of sufficient quality,

though the trends of the individual parameters are not

unambiguous as some parameters are highly correlated. In the

parametric Rietveld refinement, some trends of atomic posi-

tions are therefore difficult to model and lead to an unsa-

tisfying fit. Using the DM description, out of 13 possible

displacive modes, seven were refined, yielding sequential and

parametric refinements of good quality. Considerable care was

exercised in the choice of the starting parameters, especially in

the parametric refinement, as the fit result and quality proved

to be strongly dependent upon them. Furthermore, a careful

investigation of possible mode coupling is necessary in order

to preserve the structure. The RB and RM approaches yielded

fit results comparable to those obtained from DM. In these

cases, the oxygen atoms are constrained by rigid bodies, which

stabilize the refinements and facilitate the refinement process

as small variations in parameters are compensated so that the

global minimum of the refinement is more easily reached. The

interpretation and understanding of the atomic movements is

easier. The three rigid-body rotational symmetry-mode

amplitudes of MgO6 from the RM model, for both sequential

and parametric fits, are shown in Fig. 7.
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Figure 6
Rwp values as obtained from sequential (top) and parametric (bottom)
Rietveld refinements of Mg(H2O)6RbBr3 using four different methods to
describe the crystal structure.

Figure 7
Values obtained in sequential and parametric Rietveld refinement of the
temperature-dependent synchrotron powder diffraction data for the
three refined rigid-body rotational symmetry modes of the RM model.
Those values are used to calculate the orientations of the rigid MgO6

octahedra.



It is important to note that both the RB and RM approaches

can employ pure rotations with arbitrarily large angles,

whereas the DM approach merely approximates pure rota-

tions in the small-angle limit. Unlike the RB model, where the

three orientation angles are applied sequentially, the three

rotational symmetry modes (in radian units) in the RM model

form the components (along the unit-cell axes) of a single

rotation vector, which then determines the orientation of the

octahedron and the positions of its passenger atoms; while the

zero point of an RB-model angle is arbitrary, the zero point of

an RM-model angle is strictly defined to correspond to the

unrotated rigid body. Though the RB and RM approaches

yielded comparable fits, the relative s.u.’s of the refined

parameters obtained from the RM approach were smaller

than those of the RB approach on average.

The behaviors of the lattice parameters and angles are

independent of the atomic displacement model. Figs. 8 and 9

show their temperature dependencies in sequential and

parametric refinements. Close to the refined transition

temperature of Tcrit = 411.08 (2) K, the sequential refinement

of the monoclinic � angle turned out to be unreliable because

of its proximity to 90�. The pseudo-critical exponents obtained

from the parametric refinement are �* = 0.5 for all cell edge

lengths and �* = 0.25 for the monoclinic angle. The pseudo-

critical exponents for the three MgO6 rotational symmetry

modes of the RM model are determined to be �* = 0.5 for X�5 ,

�* = 0.2 for �þ4 and �* = 0.25 for X�1 . Roughly the same values

are obtained for the three angles of the RB model, as one

might expect. We did not attempt to compare the values of the

pseudo-critical exponents of orientational/displacive para-

meters across the four different models because the parameter

sets are so different.

Typical values of �* are one-half for ordinary scalar second-

order transitions or one-quarter for a transition at the tricri-

tical point that marks the boundary between first- and second-

order transitions (Salje, 1990). While it is more difficult to

interpret the exponents of a weakly first-order transition, the

�* = 0.5 cell-parameter exponents do suggest a linear-quad-

ratic coupling of the lattice strains to the large MgO6 rotation.

The cell parameters in Fig. 9 are derived from the cubic

parent cell in the HT phase, but indicate a pseudo-ortho-

rhombic strain in the LT phase. The rotational symmetry-

mode amplitudes of the MgO6 octahedra (Fig. 7) have nonzero

values even in the HT phase because the cubic average

structure consists of orientationally disordered local octa-

hedral rotations. Then, in the LT phase, the octahedral rota-

tions become orientationally ordered, and the magnitudes of

the two strongest rotational mode amplitudes also grow

considerably. In order to accommodate nonzero rotations in

the HT phase, we averaged the ordered superstructure over all

of the symmetries of the parent structure, which superposed

all possible local orientations of the MgO6 octahedra.

4. Conclusions

The direct refinement of rigid-body rotational (axial-vector)

symmetry modes across the cubic to monoclinic phase tran-

sition of Mg(H2O)6RbBr3, using both sequential and para-

metric refinement methods, was demonstrated using readily

available structural analysis software. This novel parameter set

(RM) was compared against a traditional but unconstrained

atomic coordinate model (AC), a traditional rigid-body model

(RB) and a purely displacive symmetry-mode model (DM). At

a given temperature, all four models span the same atomic

configuration space and, therefore, yield comparable fits as

expected. Because the RB, DM and RM models each lend

themselves to a unique set of natural or intuitive constraints,

we employed those constraints to cut the number of refined

parameters roughly in half, which resulted in significantly

smaller s.u.’s compared to the AC model. The parametric fits

of the three naturally constrained models were also substan-

tially better than that of the AC model. Owing to the reduced

number of parameters for the RB, DM and RM models,

correlations are minimized, leading to more precise trends for
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Figure 8
Values for lattice parameters a, b and c of Mg(H2O)6RbBr3 obtained in
sequential and parametric Rietveld refinements of the temperature-
dependent synchrotron powder diffraction data.

Figure 9
Values obtained in sequential and parametric Rietveld refinement for
monoclinic angle � from synchrotron powder diffraction data of
Mg(H2O)6RbBr3 as a function of temperature. Close to the transition
temperature, the values obtained are not reliable because of large
correlations.



each parameter, which simplifies the determination of suitable

starting values for parametric models as well as their refine-

ment.

Because this case study focused on a very simple octahedral

rotation pattern, the RM model was no more effective than

the RB or DM models. However, for highly complex struc-

tures involving polyhedral or molecular rigid-body motion, we

anticipate that the natural constraints provided by rigid-body

rotational symmetry modes (i.e. the RM model) will provide a

much greater degree of structural simplification because of the

preferential activation of modes belonging to a relatively small

number of irreps.

We emphasize that our use of magnetic order parameters

and a paramagnetic parent group was merely a convenient

workaround, made possible by the fact that the resulting type-

1 magnetic space group is isomorphic to the correct

nonmagnetic space group. Axial-vector rotations can also be

projected directly using nonmagnetic space groups, and we

anticipate that the ISODISTORT software will have this

capability in the future.

BJC would like to acknowledge helpful discussions with Ian

Swainson and Simon Parsons. RED and MM acknowledge

Frank Adams, Oksana Magdysyuk and Tomce Runcevski for

data collection of the synchrotron powder diffraction pattern.
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